Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

Enrique Lozano Diz, Bruno Therrien, Antonia Neels and Georg Süss-Fink*

Institut de Chimie, Université de Neuchâtel, Avenue de Bellevaux 51, Case postale 2, CH-2007 Neuchâtel, Switzerland

Correspondence e-mail:
georg.suess-fink@unine.ch

## Key indicators

Single-crystal X-ray study
$T=153 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
$R$ factor $=0.038$
$w R$ factor $=0.090$
Data-to-parameter ratio $=14.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

# Dibromodicarbonylbis(triphenylphosphine)ruthenium(II) dichloromethane solvate 

The title mononuclear ruthenium compound, $\left[\mathrm{RuBr}_{2}{ }^{-}\right.$ $\left.(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, has been prepared by a new synthetic route; it is the last complex of the series [ $\mathrm{Ru} X_{2}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ ] ( $X=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$ ) to be characterized by X -ray structure analysis. As expected, the cis- $\mathrm{Br}_{2}$-cis- $(\mathrm{CO})_{2}$-trans- $\left(\mathrm{PPh}_{3}\right)_{2}$ configuration is observed around the metal.

## Comment

Ruthenium-carbonyl-halide compounds have been known for more than 75 years (Manchot \& König, 1924). Their phosphine derivatives are directly accessible by reacting the desired ligand with $\left[\mathrm{Ru} X_{2}(\mathrm{CO})_{2}\right](X=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$ and I) in methanol, affording the corresponding hexacoordinated complexes $\left[\mathrm{Ru} X_{2}(\mathrm{CO})_{2} \mathrm{~L}_{2}\right.$ ] in good yield (Colton \& Farthing, 1967). The triphenylphosphine series has been extensively studied by different groups, e.g. $\left[\mathrm{RuF}_{2}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$, (1) (Brewer et al., 1995), $\left[\mathrm{RuCl}_{2}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$, (2) (Batista et al., 1994), the $\left[\mathrm{RuBr}_{2}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$, (3), and $\left[\mathrm{RuI}_{2}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$, (4) (Poza et al., 1987). Their molecular structures have been determined by single-crystal X-ray analysis, except in the case of the bromo derivative, (3). Here, we report a new synthetic route and the X -ray structure analysis of $\left[\mathrm{RuBr}_{2}-\right.$ $\left.(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$, (3).

(3)

A mixture (1:1) of $\mathrm{NiBr}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ and $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ in tetrahydrofuran at 358 K (closed reactor) affords compound (3) in reasonable yield. The molecular structure of (3) is presented in Fig. 1. The compound crystallizes with one molecule of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ per asymmetric unit.

As observed for analogs (1), (2) and (4), the cis (CO), cis ( Br ), trans $\left(\mathrm{PPh}_{3}\right)$ isomer is formed. The bond lengths and angles are in accordance with the trend in covalent radius of the halide atoms. The $\mathrm{Ru}-\mathrm{Br}$ distances 2.5927 (6) and 2.5940 (6) $\AA$ fall in between $\mathrm{Ru}-\mathrm{Cl}$ and $\mathrm{Ru}-\mathrm{I}[\mathrm{Ru}-\mathrm{Cl}$ 2.426 (1) and 2.453 (1) $\AA$ (Batista et al., 1994), and $\mathrm{Ru}-\mathrm{I}$ 2.767 (1) and 2.772 (1) A (Poza et al., 1987)], as expected. The influence of the halide trans to the carbonyl is reflected in the ruthenium-carbonyl distances: the $\mathrm{Ru}-\mathrm{C}$ distances (average) increase in the order of $\mathrm{F}<\mathrm{Cl}<\mathrm{Br}<\mathrm{I}$, with distances 1.841, 1.860, 1.875 and $1.885 \AA$, respectively. Otherwise, distances and angles are comparable with those of the analogs (1), (2) and (4). Selected bond lengths and angles are given in Table 1.

Received 19 June 2002
Accepted 4 July 2002
Online 12 July 2002


Figure 1
The molecular structure of (3); H atoms and the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent molecule have been omitted for clarity. Displacement ellipsoids are drawn at the $50 \%$ probability level.

## Experimental

A mixture of $\mathrm{Ru}_{3}(\mathrm{CO})_{12}(64 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathrm{NiBr}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(70 \mathrm{mg}$, 0.1 mmol ) was dissolved in tetrahydrofuran ( 40 ml ) under an $\mathrm{N}_{2}$ atmosphere using a high-pressure Schlenk tube. The solution was heated to 358 K for 16 h , until it became red-brown, and the characteristic $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ absorption at $v_{\mathrm{CO}}=2061 \mathrm{~cm}^{-1}$ was no longer observed in the IR spectrum. Then the solution was cooled, concentrated to 1 ml and chromatographed on silica thin-layer chromatography plates (4:1 cyclohexane/dichloromethane). The third yellow-orange band was collected, to afford (3) in $46 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): 7.8-7.2 ( $\mathrm{m}, 30 \mathrm{H}$ ). ${ }^{31} \mathrm{P}$ NMR ( 81 MHz , $\mathrm{CDCl}_{3}$ ): $36.2(s) . \mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}, v_{\mathrm{CO}}\right): 2058(s), 1984(s)$.

## Crystal data

$\left[\mathrm{RuBr}_{2}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$
$M_{r}=926.38$
Monoclinic, $P 2_{1} / n$
$a=10.2056$ (6) A
$b=40.436$ (3) $\AA$
$c=10.3584$ (6) $\AA$
$\beta=117.423$ (6) ${ }^{\circ}$
$V=3794.3$ (4) $\AA^{3}$
$Z=4$
$D_{x}=1.622 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 8000 reflections
$\theta=2.0-25.9^{\circ}$
$\mu=2.78 \mathrm{~mm}^{-1}$
$T=153$ (2) K
Block, yellow
$0.45 \times 0.25 \times 0.25 \mathrm{~mm}$

## Data collection

Stoe IPDS diffractometer
4461 reflections with $I>2 \sigma(I)$
$\varphi$ scans
Absorption correction: multi-scan
(Blessing, 1995)
$T_{\text {min }}=0.339, T_{\text {max }}=0.407$
$R_{\text {int }}=0.050$
$\theta_{\text {max }}=25.9^{\circ}$
$h=-12 \rightarrow 11$
$k=-49 \rightarrow 49$
15317 measured reflections
$l=-12 \rightarrow 12$
6181 independent reflections

## Refinement

Refinement on $F^{2}$
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.090$
$S=0.93$
6181 reflections
433 parameters
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0511 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=1.12 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.87 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ( $\left({ }^{\circ},{ }^{\circ}\right)$.

| $\mathrm{C} 1-\mathrm{O} 1$ | $1.140(6)$ | $\mathrm{P} 1-\mathrm{Ru} 1$ | $2.4215(12)$ |
| :--- | ---: | :--- | :--- |
| $\mathrm{C} 1-\mathrm{Ru} 1$ | $1.880(5)$ | $\mathrm{P} 2-\mathrm{Ru} 1$ | $2.4255(12)$ |
| $\mathrm{C} 2-\mathrm{O} 2$ | $1.131(6)$ | $\mathrm{Br} 1-\mathrm{Ru} 1$ | $2.5940(6)$ |
| $\mathrm{C} 2-\mathrm{Ru} 1$ | $1.871(5)$ | $\mathrm{Br} 2-\mathrm{Ru} 1$ | $2.5927(6)$ |
|  |  |  |  |
| $\mathrm{O} 1-\mathrm{C} 1-\mathrm{Ru} 1$ | $179.0(5)$ | $\mathrm{P} 1-\mathrm{Ru} 1-\mathrm{P} 2$ | $175.94(4)$ |
| $\mathrm{O} 2-\mathrm{C} 2-\mathrm{Ru} 1$ | $178.0(4)$ | $\mathrm{Br} 2-\mathrm{Ru} 1-\mathrm{Br} 1$ | $98.48(2)$ |
| $\mathrm{C} 2-\mathrm{Ru} 1-\mathrm{C} 1$ | $91.2(2)$ |  |  |

The H atoms were included in calculated positions and treated as riding atoms. Residual electron densities greater than $1 \mathrm{e}^{-3}$ are observed around the Ru atom at a distance of $0.93 \AA$.

Data collection: EXPOSE in IPDS (Stoe \& Cie, 2000); cell refinement: CELL in IPDS; data reduction: INTEGRATE in IPDS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

This work was supported by the Swiss National Science Foundation (grant No. 20-61227-00).

## References

Batista, A. A., Zukerman-Schpector, J., Porcu, O. M., Queiroz, S. L., Araujo, M. P., Oliva, G. \& Souza, D. H. F. (1994). Polyhedron, 13, 689-693.

Blessing, R. H. (1995). A51, 33-38.
Brewer, S. A., Coleman, K. S., Fawcett, J., Holloway, J. H., Hope, E. G., Russell,
D. R. \& Watson, P. G. (1995). J. Chem. Soc. Dalton Trans. pp. 1073-1076.

Colton, R. \& Farthing, R. H. (1967). Aust. J. Chem. 20, 1283-1286.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Manchot, W. \& König, J. (1924). Ber. Dtsch Chem. Ges. 57, 2130-2133.
Poza, J., Romero, A., Santos, A. \& Vegas, A. (1987). Anal Quím Ser. B, 83, 5457.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2000). IPDS Software. Stoe \& Cie GmbH, Darmstadt, Germany.

